Flex for Android in 90 Minutes

Christophe Coenraets
Adobe Technical Evangelist
Blog: http://coenraets.org
Twitter: @ccoenraets

Updated on 12/02/2010

Overview

In this tutorial, you use Flash Builder “Burrito” and Flex “Hero” to build a simple, yet fully functional
employee directory application for Android devices. “Burrito” is the code name for the next version of
Flash Builder, and “Hero” is the code name for the next version of the Flex SDK.

You don’t need an Android device to complete this tutorial: you can use the simple emulator available in
Flash Builder Burrito to run and debug the application.

The Employee Directory application allows you to:

Search for employees

View employee details

Navigate up and down the org chart
Call, text, and email employees

Before you start

1. Download and install Flash Builder Burrito. Flash Builder Burrito is available here:
http://labs.adobe.com/technologies/flashbuilder burrito

2. Download FlexAndroid90Minutes.zip from
http://coenraets.org/flexandroid90/FlexAndroid90Minutes.zip and unzip the file anywhere on
your file system.

Part 1: Creating a Basic Mobile Application

In this section, you build a simple mobile application that shows a list of employees.

Step 1: Create the Flex Mobile Project

1. Select File>New>Flex Mobile Project in the Flash Builder menu.

2. On the Project Location tab, specify EmployeeDirectory as the project name and click Next.

New Flex Mobile Project = =]]
Create a Flex Mobile AIR Project p_——

Cheose a name and lecation for your project @

| Projectlocation ~ MobileScttings ~ Server Settings ~ Build Paths |
Project name: EmployeeDirectory
Project location
[¥] Use default lecation
Ci\Users\christophe\Adebe Flash Builder Burrite Preview\Employeel| | Browse

Flex SDK version
@ Use default SDK (currently "Flex Hera") Configure Flex SDKs...
) Use a specific SDK: | Flex Hero

Flex Hero requires Adobe AIR 2.5,

,
X
=21

Cancel

3. On the Mobile Settings tab, keep the default values and click Finish.

New Flex Mobile Project = =]]

Create a Flex Mobile AIR Project

Cheoose target platforms and a layout for your mobile application. @

[Project Location Maobile Settings Server Settings Build Paths]

Target platforms
[¥] Google Android

Application template
@ Mobile Application
"I Blank

Application settings

[¥] Automatically regrient [T] Full screen

By default, your application will have permission to access the Internet, To change
the set of requested permissions, edit the application descriptor XML file. Mote that

if you disable the INTERMET permission, you will not be able to debug your
application on a device.

= : ;

@ <Back | Mea> || Fnsh || Cancel

4. Copy the assets directory from the FlexAndroid90Minutes folder you just unzipped and paste it
under the src directory of the EmployeeDirectory project.

Step 2: Code the Application
1. Open EmployeeDirectory.mxml:

e Notice the root node: MobileApplication
e Notice the firstView attribute of MobileApplication referencing EmployeeDirectoryHome

2. Open EmployeeDirectoryHome.mxml and implement the View as follows:

<?xml version="1.0" encoding=""utf-8"7>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009""
xmlns:s="library://ns.adobe.com/flex/spark" title="Home"
creationComplete="srv.send()"'>

<fx:Declarations>
<s:HTTPService id="srv" url="assets/employees.xml"/>
</fx:Declarations>

<s:List id="list" top="0" bottom="0" left="0" right="0"
dataProvider="{srv.lastResult.list.employee}"
labelField="lastName"/>

</s:View>

Notes:
e Make sure you implement this code in EmployeeDirectoryHome.mxml, not
EmployeeDirectory.mxml.
e Don’t forget to add the creationComplete event to the view.

Step 3: Run the Application

1. Right-click anywhere in EmployeeDirectory.mxml and select Run AS>Mobile Application

2. Select On desktop and choose a device to simulate. For example, Google Nexus One.

Run Configurations

Create, manage, and run configurations -

Run a Mobile application. @

= -+
B *| = 5 7 || Name: EmployeeDirectory

type filter text [Main| E Source|] Commen
E=Y Desktop Applicatis .
] Java Applet (st
[T Java Application EmployeeDirectory

Ju JUnit

@ Mobile Applicatio|| | Application file:
M EmployeeDire

Juj Task Context Test

Web Application

’ src/EmployeeDirectory.mxml -]

Target platform:

’Googleﬁ\ndroid ']

Launch method:

@ On desktop: | Google Nexus One V] ’Configure]

© Ondevice: Device connection help

[] Clear application data on each launch

¢ [m 3

Filter matched & of § items [Appl] ’ figver]

@

[R |[close |

3. Click Run and test the application. The application should look like this:

] EmployeeDirectory-debug

Device

Home

King

Taylor

Lee

Williams

Moore

Jones

Gates

Part 2: Using a Mobile Item Renderer

In this section, you define a mobile item renderer for the list of employees.

Steps

1. Open EmployeeDirectoryHome.mxml and define an inline itemRenderer for the List. The item
renderer displays the first name and the last name of the employee on the first line and the tile of
the employee on the second line.

<s:List id="list" top="0" bottom="0" left="0" right="0"
dataProvider="{srv.lastResult.list.employee}'>
<s:itemRenderer>
<fx:Component>
<s:MobilelconltemRenderer
label="{data.firstName} {data.lastName}"
messageField=""title"/>
</fx:Component>
</s:itemRenderer>
</s:List>

2. Run and test the application. The application should look like this:

B EmployeeDirectory-debug
Device

Home

James King
President and CEO

Julie Taylor
VP of Marketing

Eugene Lee
CFO

John Williams
VP of Engineering

Ray Moore
VP of Sales

Paul Jones
QA Manager

Part 3: Navigating Between Views
In this section, you create an EmployeeDetails view that shows the details of the employee selected in

the list. You learn how to navigate and pass information between views.
Step 1: Creating the EmployeeDetails View

1. Right-click the views folder in the EmployeeDirectory project and select New>MXML
Component. Specify EmployeeDetails as the component name and click Finish.

Mew MXML Compenent = @
New MxML Component
Create a new MXML component.
= 1
Source folder: EmployeeDirectory3/src Browse...
Package: views Browse...
Mame: EmployeeDetails
Layout: Mone -
Based on: spark.components.View Browse...
) : :
@ " Hnish || Cancel

2. Implement EmployeeDetails as follows:

<?xml version="1.0" encoding=""utf-8"7>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009""
xmlns:s="library://ns.adobe.com/flex/spark"
title="Employee Details'>

<s:HGroup verticalAlign="middle" gap=""12">
<s:Image source="assets/pics/{data.picture}"/>

<s:VGroup>
<s:Label text="{data.firstName} {data.lastName}''/>
<s:Label text="{data.title}"/>
<s:Label text="{data.department}'/>
<s:Label text="{data.city}'/>
</s:VGroup>

</s:HGroup>

</s:View>

Step 2: Opening the Details View

1. Open EmployeeDirectoryHome.mxml and provide the List with a change handler used to open
the details view for the selected employee:

<s:List id="list" top="0" bottom="0" left="0" right="0"
dataProvider="{srv.lastResult._list_employee}"
change=""navigator.pushView(EmployeeDetails, list.selectedltem)'>
<s:itemRenderer>
<fx:Component>
<s:MobilelconltemRenderer
label="{data.firstName} {data.lastName}"
messageField="title"/>
</fx:Component>
</s:itemRenderer>
</s:List>

Step 3: Run the Application
Select an employee in the list: an employee details view should appear for the selected employee.

HEmplayeeDilectoly-debug EI = @ EEmplweeDile:toly-dehug

Device

Home Employee Details

James King Julie Taylor

President and CEQ VP of Marketing
Marketing

Boston, MA

Eugene Lee
CFO

John Williams
VP of Engineering

Ray Moore
VP of Sales

Paul Jones
QA Manager

10

Part 4. Creating an Action Bar

In this section, you provide the Employee Directory with an Action Bar:
e You provide all the views of the application with a Home button that the user can click to go
back to the first view of the application.
e You provide the EmployeeDirectoryHome’s Action Bar with search controls to search for
employees.

Step 1: Creating a Home Button

1. Open EmployeeDirectory.mxml and define the following navigation bar content (just before the
closing </s:MobileApplication> tag):

<s:navigationContent>
<s:Button icon=""@Embed("assets/home.png”)""
click="navigator.popToFirstView()'/>
</s:navigationContent>

2. Run and test the application. Notice that because the navigation control is defined at the
application level, it is shared by all the views of the application.

Y EmployeeDirectory-debug [[=] = [=Z5||Ed EmployeeDirectory-debug
Device

Home 7+ Employee Details

James King Julie Taylor

President and CEQ VP of Marketing
Marketing

Boston, MA

Eugene Lee
CFO

John Williams
VP of Engineering

Ray Moore
VP of Sales

Paul Jones
QA Manager

11

Step 2: Creating a Search Bar

1.

2.

Open EmployeeDirectoryHome.mxml

Add the following titleContent and actionContent (just after the closing </fx:Declarations>
tag) to create a search bar:

<s:titleContent>
<s:Textlnput id="key" width="100%"/>
</s:titleContent>

<s:actionContent>
<s:Button icon="@Embed("assets/search.png®)" click="srv.send()"/>
</s:actionContent>

With this initial implementation, clicking the search button returns all the employees no matter
what you type in the search field. You implement a working search capability in Part 6.

Since we now send the request for data when the user clicks the Search button, remove the
creationComplete handler defined on the View.

Run and test the application.

Note that both the EmployeeDetails and the EmployeeDirectoryHome views inherit the Home
button defined in EmployeeDirectory.mxml. Although it is generally a good idea for all the
views of the application to have a Home button, it is superfluous (and potentially confusing) for
the Home view of the application to have a Home button.

(4] EmployeeDirectory-debug EI = @

Device

Step 3: Removing the Home Button in EmployeeDirectoryHome

1.

Open EmployeeDirectoryHome.mxml and add an empty navigatonContent tag just before the
<s:titleContent> tag:

<s:navigationContent/>

Run and test the application.

12

(4] EmployeeDirectory-debug IEI = @

Device

Note that when you open the details view for an employee, and then go back to the list using the
back button of your device (or the home button of the application), the list is empty. This is
because the previously active view is automatically destroyed when another view becomes
active. When you click the back button, the previous view is actually re-instantiated.

Step 4: Persisting the Search Results

Although a view is destroyed when it becomes inactive, its “data” attribute is persisted and re-assigned
when the view is re-instantiated.

To persist the search results leveraging the data attribute:

1. Add a result event handler to the HTTPService in which you assign the lastResult of the HTTP
service invocation to the data attribute of the view.

<s:HTTPService id="srv" url="assets/employees.xml"
result="data=srv.lastResult.list.employee'/>

2. Bind the List to data attribute of the view.

<s:List id="list" top="0" bottom="0" left="0" right="0"
dataProvider="{data}"
change=""navigator.pushView(EmployeeDetails, list.selectedltem)'>
<s:itemRenderer>
<fx:Component>
<s:MobilelconltemRenderer
label="{data.firstName} {data.lastName}"
messageField="title"/>
</fx:Component>
</s:itemRenderer>
</s:List>

3. Run and test the application.

13

Part 5: Integrating with the Device Capabilities

In this section, you allow the user to call, text, or email an employee from within the application.

Step 1: Display a List of Actions

1.

In EmployeeDetails.mxml, add a <fx:Script> block just before the <s:HGoup> opening tag.

<fx:Script>
<I[CDATAL

11>
</fx:Script>

Inside the new <fx:Script> block, define a bindable ArrayCollection to hold the list of actions
available for the selected employee:

[Bindable]
protected actions:ArrayCollection;

Note: Make sure you import the ArrayCollection class for this code to compile:
import mx.collections.ArrayCollection;

Define the following embedded icons. You’ll use them in the action list itemRenderer.

[Embed(*'assets/sms.png')]
private smslcon:Class;

[Embed(**assets/phone.png™)]
private phonelcon:Class;

[Embed(*'assets/mail.png')]
private maillcon:Class;

14

4. Override the setter for the “data” attribute of the view to populate the action list with the actions
available for the employee based on the available data. For example, an “SMS” action should
only be presented to the user if the mobile phone number is available.

override public function set data(value:Object):void

{
super.data = value;
actions = new ArrayCollection();
iT (data.officePhone)
{
actions.addltem({type: "tel", name: "Call office",
details: data.officePhone, icon:phonelcon});
}
it (data.cellPhone)
{
actions.addltem({type: "tel", name: "Call mobile",
details: data.cellPhone, icon:phonelcon});
actions.addltem({type: 'sms"™, name: ''SMS",
details: data.cellPhone, icon:smslcon});
}
it (data.email)
{
actions.addltem({type: "mailto”™, name: "Email’,
details: data.email, icon:maillcon});
}
}

5. Display the list of actions: Below the closing </s:HGroup> tag, add a List component bound to
the actions list.

<s:List id="list" dataProvider="{actions}"
top=""160" left="0" right="0" bottom="0">
<s:itemRenderer>
<fx:Component>
<s:MobilelconltemRenderer
paddingTop="'8" paddingBottom="8" verticalGap=""6"
labelField=""name"
messageField="details"
decoratorClass="{data.icon}"/>
</fx:Component>
</s:itemRenderer>
</s:List>

15

6. Run and test the application. When you select an employee in the list, you should see the list of
available actions for that employee. The actions don’t work yet. You make them work in the next
step.

1 EmployeeDirectory-debug

Device

Employee Details

Steven Wells
Software Architect
Engineering
Boston, MA

Call office
617-000-0012

Y

Call mobile
781-000-0012

)

SMS
781-000-0012

a

Email
swells@fakemail.com

g

16

Step 2: Triggering the Actions

1. Add a change handler to the List:

<s:List id="list" dataProvider="{actions}"
top="160" left="0" right="0" bottom="0"
change=""list_changeHandler(event)">
<s:itemRenderer>
<fx:Component>
<s:MobilelconltemRenderer
paddingTop="'8" paddingBottom="8" verticalGap=""6"
labelField="name"
messageField="details"
decoratorClass="{data.icon}"/>
</fx:Component>
</s:itemRenderer>
</s:List>

2. Implement list_changeHandler as follows:

protected function list_changeHandler(event:IndexChangeEvent):void

{
action:Object = list.selectedltem;
switch (action.type)
{
case "tel™:
navigateToURL(new URLRequest(‘'tel:"+action.details));
break;
case '"'sms':
navigateToURL(new URLRequest(''sms:''+action.details));
break;
case "mailto":
navigateToURL(new URLRequest('mailto:"+action.details));
break;
}
}

Note: Make sure you import spark.events. IndexChangeEvent (and not
mx.events.IndexChangedEvent) for this code to compile:

import spark.events. IndexChangeEvent;

3. Run and test the application

17

Part 6: Using a RemoteObject

In this section, you make the search feature work. You replace the HTTPService with a RemoteObject
that provides a findByName method. For your convenience, the RemoteObject is hosted in the cloud so
you don’t have to deploy anything in your own infrastructure.

You could of course have implemented the search feature using an HTTPService. The reason we are
switching to a RemoteObject is to experiment with different data access strategies.

If you are not interested in using a RemoteObject, you can move straight to Part 7.

Steps

1. Open EmployeeDirectoryHome.mxml. Replace the HTTPService with a RemoteObject defined
as follows:

<s:RemoteObject id="srv" destination="employeeService"
endpoint=""http://flex.org:8080/extras/messagebroker/amf"
result="data=srv.findByName. lastResult'/>

2. Modify the click handler of the search button: use the RemoteObject’s findByName method to
find the employees matching the search key entered by the user.

<s:Button icon="@Embed("assets/search.png®)"
click="srv.findByName(key.text)"/>

3. Run and test the application: Type a few characters in the search field and click the search button
to see a list of matching employees.

(4] EmployeeDirectory-debug Ell = I@

Device

st

Jim Steinberg
Dep. Secretary of State

Steven Chu
Secretary of Energy

18

Part 7: Using the Local SQLite Database

In this section, you change the data access logic of the application: instead of using a RemoteObject (or
an HTTPService), you use the SQL.ite database available on your device to access the data.

Steps

1. Copy the model directory from the FlexAndroid90Minutes folder and paste it under the src
directory of the EmployeeDirectory project.

2. Explore the source code of the EmployeeDAO and Employee classes:

e The EmployeeDAO class provides a basic implementation of the Data Access Object
pattern: it encapsulates the data access logic to create, update and delete employees. If the
employee table doesn’t exist in the database, EmployeeDAO also includes some logic to
create it and populate it with sample data.

e Employee is a basic value object that also provides some lazy loading logic to load the
employee’s manager and direct reports as needed.

3. In EmployeeDirectoryHome.mxml, replace the RemoteObject (or the HTTPService if you didn’t
complete Part 6) with an instance of EmployeeDAO

<model :EmployeeDAO id="'srv'/>

Note: Make sure the model namespace is bound in the View definition at the top of the mxmi
document:

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmIns:s="library://ns.adobe.com/flex/spark' title="Home"
xmIns:model="model . *"'>

4. Modify the search button click event handler accordingly.

<s:Button icon=""@Embed("assets/search.png®)"
click="data=srv.findByName(key.text)"/>

Note that in this case, we can directly assign the return value of the findByName function to data
because EmployeeDAO uses the synchronous version of the database access API.

5. Open EmployeeDirectory-app.xml, and scroll down to the end of the document. Add the
following permission inside the manifest tag (right after the android.permission. INTERNET
permission):

<uses-permission android:name=""android.permission.WRITE_EXTERNAL_STORAGE"/>

6. Run and test the application

19

Part 8: Navigating the Org Chart

In this section, you add the “View manager” and “View direct reports” actions to the Employee Details
view to allow the user to navigate up and down the org chart.
Step 1: Create the DirectReports View

1. Right-click the views folder in the EmployeeDirectory project and select New>MXML
Component. Specify DirectReports as the component name and click Finish.

Mew MXML Compenent = @
New MxML Component
Create a new MXML component.
= 1
Source folder: EmployeeDirectory8/src Browse...
Package: views Browse...
Mame: DirectReports
Layout: Mone -
Based on: spark.components.View Browse...
) : 1
@ " Fnish || Cancel

2. Implement DirectReports.mxml as follows:

<?xml version="1.0" encoding=""utf-8"7>
<s:View xmIns:fx="http://ns.adobe.com/mxml/2009""
xmlns:s="library://ns.adobe.com/flex/spark™ title="Direct Reports'>

<s:List id="list" top="0" bottom="0" left="0" right="0"
dataProvider="{data.directReports}"
change=""navigator .pushView(EmployeeDetails, list.selectedltem)'>
<s:itemRenderer>
<fx:Component>
<s:MobilelconltemRenderer
label="{data.firstName} {data.lastName}"
messageField="title"/>
</fx:Component>
</s:itemRenderer>
</s:List>

</s:View>

20

Step 2: Add the Actions to Navigate the Org Chart

1.

In EmployeeDetails.mxml, add two possible actions to the set data function:

iT (data.manager)
{
actions.addltem({type: "employee', name: "View manager',
details: data.manager.firstName + " ' + data.manager.lastName,
employee: data.manager});

}
iT (data.directReports && data.directReports.length > 0)
{

actions.addltem({type: "reports', name: "View direct reports",
details: (" + data.directReports.length +)",
employee: data});
}

In the List change handler, add two case statements to trigger the corresponding actions:

case "employee™:
navigator.pushView(EmployeeDetails, action.employee);
break;

case "'reports'':

navigator.pushView(DirectReports, action.employee);
break;

21

Step 3: Run the application.

1. Select an employee who has a manager and click the “View manager” action
2. Select an employee who has a direct reports and click the “View direct reports” action

EY EmployeeDirectory-debug [=] = [Z5| [EYEmployeeDirectory-debug

Device

Employee Details

John Williams

VP of Engineering
Engineering
Boston, MA

Steven Wells
Software Architect

A

Call office
617-000-0004

iy

Lisa Wong

Call mobile
Marketing Manager

781-000-0004

iy

SMS
781-000-0004

@

Email
jwiliams@fakemail.com

| <

View manager
James King

View direct reports
(3

EJ EmployeeDirectory-debug

Device

Direct Reports

Paula Gates
Software Architect

Paul Jones
QA Manager

Steven Wells

Software Architect

22

